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Optimum  Reception  in  an  Impulsive  Interference 
Environment-Part 11: Incoherent  Reception 

ARTHUR D. SPAULDING AND DAVID MIDDLETON, FELLOW, IEEE 

Absfruct-In  Part I, the  relevant  statistical  properties of the  recently 
developed  statistical-physical  model of generalized  impulsive interfer- 
ence  have  been  briefly  reviewed  (for  sub  Class A noise) and  then  ap- 
plied  specifically to optimum  coherent  detection.  It is shown  that  by 
using optimum  and (locally optimum)  detection  algorithms  (canoni- 
cally and  explicitly derived),  substantial  savings  in  signal  power  and/or 
spectrum  space c p  be achieved for  operation in  these  highly non- 
Gaussian  interference  environments.  This  paper  (Part 11) extends  the 
preceding  analysis to cover  various important cases of incoherent  recep- 
tion.  The  same general model  for  narrow-band (Class A) impulsive inter- 
ference  and  interference  examples used in Part  I  are again  employed 
here. In addition  to  providing  both  canonical LOBD structures  and  ex- 
pressions  for  performance, this  permits  explicit  quantitative  compari- 
sons between  coherent  and  incoherent  reception  for  common classes of 
specific  digital  signal  waveforms. 

I.  INTRODUCTION 

A S WE have already noted  (Part I), man-made electro- 
magnetic interference (or noise) has become  a problem 

of increasing concern  to  the  telecommunications  community, 
particularly in the face of increasing demands on available 
bandwidth resources. The man-made EM environment,  and 
much  of  the  natural  one as well, are basically “impulsive”; i.e., 
have a  highly structured  character,  with noticeable  probabili- 
ties of large interference levels, unlike the  normal (Gaussian) 
noise processes usually  assumed  (and  extensively  analyzed in 
earlier work). In the previous paper (Part I), we have described 
the relevant statistical properties of a recently developed 
canonical,  statistical-physical model of impulsive interference 
[ 1, 21 , and we have then used this  model specifically to  obtain 
the associated optimum  detection algorithms and to analyze 
detector  performance  for  coherent  binary signals in Class A 
interference as well as to obtain general structures  and per- 
formance canonically. Class A interference arises from sources 
whose emission spectra are comparable to or  narrower  than 
the bandpass of  the receiver in use. [For a  comprehensive 
description of Class A  noise, and  the noise model generally, 
which includes Class B interference [i.e., “broad-band noise”] , 
and  combinations of Class A and Class B types, see Ref. [ 2 ]  .] 
In this  paper (Part 11)  we treat  the  incoherent (i.e., unknown 
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signal phase) binary  detection case. In general, incoherent 
detection  problems are technically much  more difficult to 
treat  than  coherent  ones,  and  the cases considered  here  are no 
exception  to this  observation. The basic binary,  incoherent 
detection  situation  here  may be concisely stated in the usual 
way [3] as a composite  two-hypothesis statistical test: 

H~ : x(t) = s,(t, e )  + z(t), o G t < T 

H ~ :  x(t) = sz(t, e )  + z(t), o G t < T 
(1) 

where 2 is the accompanying interference  and  the vector 8 
denotes  the  unknown  parameters  of  the signals. These un- 
known  parameters  may be  phase, amplitude,  frequency,  or  any 
combination of them.  The  optimum  detector is well known  to 
be  a generalized likelihood ratio A(X), with decisions made 
vis-a-vis a threshold K ,  viz., 

f decide: 

As before, p(X I H 1 , 2 )  is given by  (32) of  Part  I,  with 
p(X I H 1 , d  = pz(X - Sl,2(0)) (e.g., (15) of Part 0 ,  and 
p ( 8 )  denotes  the  pdf  of  our  unknown  parameters 0 .  Since our 
p(X I Hl,2) are given here for  independent sampling by  the 
Nth product of an infinite summation (see (1 5 )  of Part I), it 
is unlikely that  the required averages (over 0) can be per- 
formed explicitly for general p(0) .  [Later, however, we will 
show how, in special circumstances, the averages can  be  per- 
formed  directly, reducing the  problem  of evaluation to one 
equivalent to  the  coherent case, so that  the  methods  of  the 
previous  paper [Section 1111 can  be  used.] 

In general, the chief new results here are: (i), various 
canonical structures  for  binary  optimum  incoherent  threshold 
detection,  particularly involving nonuniform phase distribution, 
and (ii), calculation of performances  under Class A interfer- 
ence, including  comparisons with  conventional  correlation 
receivers. Thus, we begin (in Section 11) with a  canonical (vis- 
a-vis the noise) treatment of the  important case of  incoherent 
threshold signals and consider the case of unknown  amplitude 
and phase. For  the  unknown  amplitude cases, we treat  both 
“fast”  and “slow” fading. In  Section I1  we also consider the 
important case where phase estimation is used,  with  the 
ON-OFF  incoherent case as a special situation of particular 
interest.  In  Section 111, we extend  the analysis to include 
general incoherent signals (without small-signal assumptions). 
Performance of  the  optimum (and  locally optimum (LOBD)) 
incoherent  detectors is next  computed in Section IV, as is the 
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performance (error  probabilities)  of the  suboptimum systems 
(i.e., matched  filter  detectors,  optimum  for Gauss). These 
performance results are then  compared  for  the same signaling 
situations.  Optimum  incoherent  and  optimum  coherent re- 
ceiver performance are similarly compared.  Finally, in Section 
V we summarize the principal features  of  the many new results 
[obtained  both in (Part I) and in this  paper], along with  a 
short discussion of their implications and  further technical 
problems  to be investigated  for  these highly non-Gaussian 
interference  environments. 

11. INCOHERENT DETECTION OF THRESHOLD SIGNALS 

In this section we treat  the case of the  threshold signal or 
locally optimum Bayes detector (LOBD) for some  representa- 
tive incoherent  reception  situations: 

A.  Unknown Amplitude and  Phase 

Consider the  standard (as received) fading, incoherent 
frequency-shift  keying signals, with  unknown  amplitude  and 
phase : 

S,(t, e) = a  cos (wit + @) 

S2( t ,  0) = a  cos (w2f  + @) 
(3) 

where a denotes  the  unknown  amplitude and @ the  unknown 
phase; a and @ we postulate to  be independent,  and in ( 2 )  
above 0 = {a, @}. As before (Part I), we let  the  SNR be S; i.e., 
we choose (a2)= 2s. The likelihood ratio ( 2 )  for these  discrete 
sampling cases is now written explicitly 

Now, dividing the  numerator and denominator of A(.%‘), (4), 
by p;(X) and assuming again N independent samples  [cf. 
remarks  in latter part of  Section 11, Part I] , we obtain 

with corresponding  results for pl (X) ,  where l(xi) denotes  the 
nonlinearity  obtained previously [cf.  (35), Part I] , e.g., 

Since 

we obtain 

where p(a) and p(@) are the  pdfs of.a and q5, and s2i = 
a cos (w2ti + @), i = 1, -1, N, etc. 

We start  with  the small signal case and as before use the 
Taylor  expansion (33a)  about (S = 0), now  retaining terms  at 
least O(S2) in the  development. We next let the phase @ be 
uniformly  distributed (-n,  n) and let the  amplitude a have 
an  arbitrary fading distribution. We consider two fading situa- 
tions: 1,  slow fading, and 2,  fast  fading: 

Case 1. Slow Fading 
First  consider the slow fading  case,  where a is random,  but 

constant over the  detection period T. Then we have at  once 
from (3) 

and 

J @  Ja 

Therefore, since b2)/2 = S, our desired test (4) is given by 

S - 
N N  

decide : 

We see that,  for  arbitrary  thresholds,  the receiver depends only 
on  the average signal power S and is independent of the par- 
ticular slow fading distribution.  For  the symmetrical case 
(K = l), the receiver structure is also independent of S. Using 
a  trigonometric  identity for the cos (a2ti - W Z t k )  term, we 
obtain  the following receiver (K = 1): 

decide: 

H 2  
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which is shown  in Figure 1. We see that this is simply the 
standard  noncoherent  binary receiver optimum when the 
interference is Gaussian noise, now preceded  by the nonlinear 
adaptive  filter l (x) ,  (7). This result corresponds to  that  out- 
lined earlier for  coherent signals [cf. (35), Fig. 12,  Part  I]. If 
the  threshold is other  than 1, then  the receiver also depends  on 
the average signal power S and via (IO), must contain a branch 
involving l’(x), the derivative of the  nonlinearity (7). 

Case 2. Fast Fading 
We next consider the fast-fading signal situation where 

a + {ai} in (3). Then, we obtain (6), with (a2) replaced  by 
(aiak)  therein,  which, if ai and ak are independent, yields 

with a  corresponding  expression  for p l ( X ) ,  where ua2 is the 
variance of a .  We see that if K = 1, we obtain  the same receiver 
as before [(I 1) and  (12)] , but if K # 1,  then  the receiver for 
the fast  fading case is different  from  that  for  the slow fading 
case. The fast  fading receiver involves (a)2 as well as the signal 
power (i.e., (a2)), and is explicitly 

decide: 
2 N  

G2 + (1 - K )  + (1 - K )  !E x (I’ + 1 2 )  5 KG1, 
4 i = l  

H2 
2 

Recently, Nirenberg [4]  has  shown,  by  quite  different  tech- 
niques, that  the above results (Fig. 1)  hold  for m equiprobable 
incoherent signals. 

B.  LOBD for  ON-OFF  Incoherent Signals 
The  ON-OFF  incoherent signaling case turns  out to be  a 

special situation. Consider the  two  hypotheses: 

H I :  X ( t )  = Z( t ) ,  0 < t < T 

H ,  : x(t> = z(t) + s(t, e) ,  o G t < T, (14) 

where S(t, 0 )  = cos ( w t  + @), and @ is uniformly distrib- 
uted.  Let us proceed (K = 1) as in (6) earlier, but now for  the 
ON-OFF  situation (14), using only second-order terms, O(S). 
We see at once that,  under H 1 ,  neither H1, the receiver struc- 
ture,  nor  the  threshold  depend  on  the signal strength S. That 
is, under H 1 ,  performance is independent of signal level. This 
is not  too satisfying  physically, since we may  reasonably 
expect  that  for  ON-OFF signals, the  threshold,  at  least, should 
depend  on signal size. [We can also readily see how  this  state 

Figure 1.  LOBD for  binary  NCFSK, constant or slow fading  signal, 
K = l , f r o m e q . ( l I ) .  

of affairs  comes about  by looking at  the Gaussian case,  where 
the  optimum receiver is  well known;  cf. Sec. 5.1.2 [5] .] 
Accordingly, for a physically meaningful threshold receiver 
for  the  incoherent  ON-OFF case, we must include higher order 
terms,  at least  in the  determination of the  threshold. This is a 
special instance of insuring “consistency” (i.e., P, + 0 as 

Thus, we return  to  the case of impulsive interference,  and 
find  that  the  next  nonzero  terms in the  threshold  development 
of p 2 ( X ) / p z ( X )  are the  4th-order  terms, namely 

N +O0, [61>. 

(15) 

If  we discard all the  4th-order  terms  except  those which con- 
tribute  to  the  threshold,  that is, all terms  except  for il = i2 = 
i3 = i4, we obtain  the  (approximate)  threshold 

replacing the zero  threshold of the  incomplete,  second-order 
development. Now the  threshold  depends  on  the signal level. 
[Whether using (16)  insures the desired  consistency must be 
determined  from  the  Asymptotic Relative Efficiency  (ARE), 
etc.  [6] .] The LOBD itself becomes  here from  (6), (9) and 
(1 6): 

decide: 

N s I\‘ d4&(Xi) - x 1’ (X i )  - - ~ . 
i 8 , dxi4 

C. Threshold  Receiver (LOBD)  when Phase Estimation is Used 

In  the  above, we have assumed that  the  (RF) phase is uni- 
formly  distributed (-T, n). Improvement in performance can 
be  gained, however, if  we can learn what  the RF  phase may  be. 
Thus,  it is common in receiving systems to employ phase- 
tracking loops  to  obtain  an  estimate of the desired phase. We 
may term  this device a  “partially coherent receiver.” When 
such phase estimation is used, it is common  to use the 
Tikhonov  distribution p(@ I R) for  the phase angle or phase 
error, viz: 
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where R is a parameter which  measures the spread of the  PDF 
and which has  an  important physical significance in the  study 
of phase estimation  [Van Trees, [7],  Chapter 11.21. For 
example,  when, 52 = 0, (18)  yields as one  extreme  the previ- 
ously treated cases uniform phase distribution and at  the  other 
limit, R + 00, the  coherent  state of completely  known phase is 
achieved. 

Using this phase distribution in the  threshold receiver devel- 
opment,  with s P i  = cos (w2ri + G), we readily find that 
the 1st order  terms (in S) in the LOBD are no longer zero, 
and are 

[We note  that d l i g i )  = 0 for R = 0, as before (A,  B  above), and 
that d r Z i )  = cos a p t i ,  as R -+ 00, since lima+, (Zl(R)/ 
Zo(R2)) = 1,  which yields just  the earlier result for  the  coherent 
case (Part I ,  Section V).] Then, limiting ourselves to  1st-order 
terms  only, we  see that  the statistical test (LOBD + decision) 
reduces to 

decide : 

which is the same threshold receiver (LOBD) obtained previ- 
ously in Section  V,  Part I for  coherent signals (cf. Fig. 12, 
Part I ,  for  coherent FSK in this case). 

At this first level of approximation,  the receiver is seen to  
be  independent of the  parameter R and  thus makes no explicit 
use of the phase information (R # 0) pertinent  to  detection. 
For  this reason we may expect  an  improvement in perform- 
ance (larger ARE) if knowledge of R is employed. This sug 
gests that we include  second order  terms ( S 2 )  in the LOBD 
as well. 

Accordingly, for  the  2nd  order  terms, we have 

( s Z i s P j )  = I_: 2 s  cos (W2ri  + $1 cos (w2tj + 4) 

SIP(!J2) = S COS (wari - w2rj) + - 
IO(R) 

COS (wari + warj).  

(21) 

In our  threshold (or LOBD) expansion,  from (6 )  and (21), the 
2nd  order  terms  now give a sum of two  double  summations, 
the first  consisting  of slowly varying terms (wZti  - wari), the 
second  of  rapidly  oscillating or "double  frequency" terms 
(apti + w2rj), which largely cancel each  other.  Thus,  the 
second double  summation is negligible vis-a-vis the first  [see, 

Figure 2. Second-order threshold receiver (LOBD) for NCFSK with 
phase estimation (22). 

for  example, Hancock and Wintz [8],  Chapter 31. With both 
the 1st order  and  2nd order terms,  the result is now  a receiver 
which is the weighted  sum of the purely coherent  threshold 
receiver and  the  purely  incoherent  threshold receiver. The 
LOBD is shown in  Figure  2 for K = 1,  and is specifically 

decide: 

H1 
= E  < 0. 

H2 

2 

In Figure  2 we note  that  for R = 0, the receiver reduces to  
that  obtained earlier (Fig. 1)  for uniformly distributed phase 
and as R -+ m; i.e., phase fully known  at  the receiver, we 
obtain  the  coherent LOBD derived previously (Part I) (but 
now with  the  addition of the  2nd-order  terms, which  improves 
the.ARE). Finally, we remark that in studying  optimum recep- 
tion of coded,  multiple-frequency keying with  random variable 
phases, Nesenbergs [9]  has shown  (for Gaussian noise) that 
the  appropriate receiver is also a  weighted  sum  of the  standard 
linear (coherent) receiver and  the  standard  quadrature (inco- 
herent) receiver. We have shown  here that  this is a completely 
canonical  result: one always gets this  type of LOBD receiver 
for partially known phase, regardless of the explicit structure 
of the  pdf of the  interference. 

111. OPTIMUM DETECTION OF  GENERAL 
INCOHERENT  SIGNALS 

In  the previous Section we obtained  threshold  or locally 
optimum receivers for a variety of  binary incoherent  and 
partially coherent  reception  situations. Here we examine the 
general question of composite  hypothesis  testing; i.e., without 
any small-signal assumptions. In general, we are not able to  
obtain any  explicit receiver structures,  but we are able to ob- 
tain expressions  useful  in determining a bound  on  optimum 
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performance. The techniques developed  here are helpful in 
any composite  hypothesis testing problem,  such as the previ- 
ous  incoherent examples (Sec. 11). The technical  difficulties 
lie in  performing the averages over the  random  parameter 
(vector) t9 in the likelihood ratio, cf.  (4), t9 = (a, 4). . ' 

Accordingly,  let  us look  at Class A  interference specifically 
in our  effort  to establish  explicit performance  bounds, in 
contrast  to  Sections  I  and I1 above where the analysis, gave 
LOBD's which were canonical vis-a-vis interference  and signal 
waveforms. 

Our  pdf  for  this  interference is 

where am = (m/A + r")/(l + r"). Each term of the sum (23) 
can be expressed as a  Fourier  transform, so that,  with a change 
of integration  and carrying out  the  summation,  with  the  help 
of the  characteristic  function Fl(j$),  [ 11 , we get 

This yields correct limiting behavior for  both large and small 
values of'signal amplitude [see [ l ]  , p. 27  et seq.] . Now for  the 
argument L C 2  + LS2  in (26), we have 

where we can neglect the  summation of  oscillating terms 
(i # k )  when N is large, so that these  are  essentially cancelling 
oscillations  in the  detection period [0, T I ,  in total, negligible 
compared  to  the (i = k )  contribution. Our,  making this assump- 
tion  destroys insight into receiver structure,  but is useful 
in calculating performance. Applying (28b) to  (26) in (25), we 
get (the  incoherent result) 

The required average (over 4) in (25),  denoted by Z, is then 

where 

N 
LC = cos &,ti, 

i= 3. 

[We now  remark  that if the small-signal approximation Jo(x) = 
1 - (x2/4) is used, we obtain results identical to  (6) for inco- 
herent  threshold  reception  [Section 111: cf.  Sec. 5.2 ,  [SI 1 .  

Rather  than using the weak-signal approximation to  Jo(x) = 
1 - x2/4, we can use the  steepest-descent  approximation 

[Note  that p 2 ( X )  is a  proper  pdf; i.e., it is everywhere P O )  
and  integrates on (-m, -) to  unity.] Using (29b), we find 
finally that  the likelihood ratio  and  test  for  the  ON-OFF 
incoherent case in Class A noise now becomes  approximately, 
for small and large signal levels, 

decide: 

H1 
< K.  (30) > 

H 2  

[We shall use (30) in the  next  Section (IV, B) to  compute 
performance  for  this  ON-OFF  incoherent case (with K = l).] 

IV. DETERMINATION OF INCOHERENT  PERFORMANCE 

Having obtained LOBD receiver structures  for  incoherent 
reception  under  arbitrary classes (pdfs) of interference, we 



SPAULDING AND MIDDLETON: RECEPTION  IN  IMPULSIVE INTERFERENCE ENVIRONMENT-PART I1 929 

wish now to evaluate the  performance of these receivers. and 
Results  for  performance of these LOBD structures will  be 
obtained in Section [A] .  We than  apply  these  results to our Var [ylc I N 1 ~  =x (L  - 2 ~ L 2  cos2 wlti) cos2 

case  of  Class A interference  and  compare receiver performance 
with that calculated in Part I for coherent LOBD  receivers to  
examine  the  degradation  which  occurs  when  phase  informa-  (32b) 
tion is lacking. In Sec. I1 we obtained  an  approximation  to  the 
likelihood  ratio  (30)  for the  important case of  optimum 
incoherent  ON-OFF  reception,  at all signal levels. We will N 

accordingly use (30) to determine  the  corresponding receiver E[YIs lH1l = - L f l  cos wlfl sin w l t i  

performance  and to compare  this  performance  with  that  of  the 
corresponding  coherent  system in Section  [B] . Finally,  the 
performance  of  subdptimum  incoherent  correlation receivers - - 
is also computed  for our  Class A interference in Section  [C] . 

N 

i = l  

For Yls ,  we get 

i = l  

(3 3 a) 

A .  Perfomzunce of Threshold (LOBD) Receivers 
for  Binary NCFSK 

and 

N 
In this  section we  use the receiver structures  and results Var [yl, IN,] = ( L  - 2SL2 cos2 wlti) sin2 wlt i  

obtained in Sections I1 and I11 above to evaluate the  perform- i = l  

ance of the  canonical  incoherent receiver. We start  with  the 
detection  situation N SL2 

= x L sin2 wlt i  -- sin2 2w1ti . 
Hl : X ( t )  = Z( t )  + Sl(t, @), 0 < t < T 

H a :  X ( t )  = Z( t )  + S2( t ,  @), 0 < f < T 

i= 1 2 
(31)  (33b) 

where in the special  case  of  Binary  NCFSK signals, 

S,(t, @) =&3 cos (wlt  + @) 

S,(t, 4) = &3 cos (w2t + $1, ( 3  1. a) 

and  the phase @ is uniformly  distributed. For the  threshold 
choice K = 1, the  appropriate LOBD  receiver  is shown in 
Figure 1 for these  particular signals. 

As was  discussed in Part I, (Section V),  the  action  of  the 
nonlinearity /(x) allows us to  obtain  an  estimate  of  perform- 
ance via the  Central  Limit  Theorem.  That is, we note  that  by 
the  CLT  (for  these  independent  samples), YlC, Y1,. Y2c, and 
Y 2 ,  in Figure 1 are  (asymptotically)  normally  distributed. We 
shall first  carry out  an "exact" evaluation,  up to  the  formal 
representation  of  the  probability  of  error,  cf.  (38),  which, 
however,  requires  numerical  evaluation. Then, we shall sim- 
plify  these  results, again under  the LOBD conditions to  obtain 
the desired approximation  explicitly,  without having to go the 
route of numerical  calculations. 

Let us suppose H I  to be true, so that xi = z i  + sli, sli = 
m c o s  (witi + @), and P, I H1 = Prob [e1 < e 2 ] .  The  squar- 
ing and  summation  operations in the receiver (Fig. 1) yield 
receiver operation  independent  of  the  unknown  phase. We 
therefore can set @ = 0. We now use the results of Part I, 
Eqs.  (36b)  and  (38b), to calculate  the  mean  and variance of 
yi under H 1 ,  which  for  these  particular signals (31a)  become 
(for  the top branch  of  the receiver) 

N 
= -L&3 ;r: cos2 w1ti, 

i = l  

For  the  lower, (a2) branch  of  the receiver, we obtain similarly: 

and 

Now  we  have (cf.  Fig. 1) el E Ylc2 + Y l s 2 ,  so that (Omura 
and  Kailath [ l o ] ,  p. 69)  the  pdf  of t!le LOBD under HI is 
explicitly 
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plC =E[Y1; IH11, 0lC2 = Var [Yl,  [ H I ] ,  Similarly, from  (34b),  (35b) we get 

(36a) LN 
UZc2  y (1 - S L )  UZs2 = 0 2 2  

Also, for i2 E Yzc2 + YZs2  (cf. Fig. 1) we have similarly L 

[ l o ] ,  P. 62,  Therefore, we have for (37) 

(37)  Applying  (41) and (43) to (38), we obtain 

For H2 true, we obtain  completely symmetrical  results, so 
the  probability of error is  given by where 

(44) 

P, = P, I H1 = Prob [e1 < e2] 
x2 + a2 

e(a, b)  x exp ( -7) Io(ax> dx. ( 4 4 4  

Next, we evaluate  (44) using (8) or (13) of Nutall [ 111 , to get 

=lm P2(e2)[2Pl(r1)d€1 df2. (38) 

In (38), the integral over el is simply the  distribution  function 
of e l ,  evaluated at e2. This is a  known result that gives an  1 
infinite series of QM-functions (see Omura  and  Kailath, [ l o ] ,  P, = (45) 
p. 22). The remaining integration, involving products.of  expo- 1 + u12/u22 

nentials,  QM-functions,  and  modified Bessel functions, I O ,  can 
ais0 be evaluated  analytically (Nuttall, [ l  11 , [13] ). These Since sL @ 7 we can use = u22 NL/2, write  (32a) as 
rather  complex results then require  numerical  evaluation. NL 

assumption  and relations, and avoid the necessity of numerical 
evaluations: We make the following  observations: From  (32b), 
we have 

However; we can take advantage of the small-signal (LOBD) plC = 7 @, (46) 

to obtain finally the simple (approximate) result 

N N 
ulc2 = L z cos2 u l t i  - 2 s ~  z cos4 ulti 

i= 1 i= 1 
(47) 

Our result (47) gives the desired  estimate of performance -7). (39a) for  the  optimum  incoherent  threshold receiver for  the specific 

--;) 

2 (NCFSK) signals (31a). In Part. I we obtained corresponding 

Likewise, from  (33b) we get results  for the  coherent case [Section V] . The result (51), 
Part I, applies for coherent  antipodal signals (CPSK); Le., 
@ = -1, but is easily.  modified.  for CFSK signals (@ = 0). 

(39b) Figure 3 shows the NCFSK performance  [from (47)] and  the 

I” = 0.5 X (i.e., L = 1340). As expected,  incoherent 
Now both L and N are large, and  from  our small Signal assump- LOBD performance  is\ degraded vis-a-vis the corresponding 
tion SL @ 1, so that  coherent  operation,  but all performance  greatly  improves 

UlS2 2 
2 corresponding  performance  for  CFSK for our case A = 0.35, 

with N (= time-bandwidth  product). 
NL 

U l C 2  x fJlS2 x- - = 0 1 2 ,  (40) 
2 B. Performance of  the  Optimum  ON-OFF  Incoherent 

Receiver in Class A Noise 
and,  therefore, (36)  reduces (approximately) to We turn now to  the result .(30)  obtained in  Section I11 for 

the likelihood ratio  and decision process in the case of the 
optimum  ON-OFF  incoherent receiver for all signal levels in 1 €1 +PlC 

Pl(f1)  =- 
2% Class A noise. Using the  techniques [Section 1111 developed 
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SNR, S, dB 

Figure 3. Performance  of  threshold  receiver  for  binary NCFSK [from 
(47)] and  for  binary  CFSK  [from  Part 1, (42)]  for  the Class A 
interference  case A = 0.35 and r” = 0.5 X 

in  Part I, we obtain  the  bound on performance for K = 1,  
(ql  = 41 = 1/2), (18), Part I, specifically here 

1 

. e - x i 2 / 2 a m  ‘ I f f  dx,  

cf.  (19b), Part I .  Since now all signal samples are the same, we 
have (cf.  (21a), Part I) 

where now 

(49) 

and a* is the value of (Y that minimizes the right-hand side of 
(SO). The  proper values of a* depends on signal level S, so that 
computer evaluation  also involves finding a* for each S. Table 
1 gives a* for various values of signal power S, obtained  by 
computer  search. 

Figure 4 shows the  estimate P, * of performance ,for N = 10 
from (49). Also shown is the  performance  boundP,  obtained 

TABLE 1 
THE OPTIMIZING  VALUE O F  a* FOR VARIOUS  SIGNAL POWER 

LEVELS S 

30  .30 0 .57  -30  .45 

25 .38 - 5  .54  -35  .47 

20 .46 -10 .50 -40  ,485 

1 5  .53 -15 .47  -45  .49 

10 .58 - 20 .44 - 50 .‘I95 

5 .59 - 2 5  .43 

P =loo0 
N = I O  
A = 0.35 
rl = 0.5~10-3 

Pe ---Coherent Off-On 

’‘I 
SNR, S / P . d B  

Figure 4. Performance  estimate  for  the  optimum  incoherent  ON-OFF 
receiver [from (4911 and  the  performance  bound  [(34),  Part I]  for 
the  optimum  coherent  ON-OFF receiver for  the  interference case 
A = 0.35, r‘ = 0.5 X and  for N =  10. 

in Part I for  coherent  ON-OFF signaling. Figure 5 shows the 
performance  bound ke and performance estimate P,* (coher- 
ent  and  incoherent)  for N = 10, 100,  and  1000. On  these 
Figures the SNR is  given by S/2; i.e., the average signal power 
in the  two signals, one signal being zero. The  results indicate 
that,  not  unexpectedly,  the  incoherent  optimum receiver 
performs substantially worse than  the  coherent  optimum 
detector. However, our  estimate P,* of performance  for  the 
incoherent case is quite likely much  cruder  than  the  coherent 
bound k,, especially for small N. 

C. Performance of Noncoherenr Correlation (i.e.,  Suboptimum) 
Receivers in Class A Interference 

It remains now to  compute  the  performance of the  current 
suboptimum  correlation receivers in Class A “impulsive” inter- 
ference. The performance  for binary NCFSK is quite easy to  
obtain.  For  arbitrary interference  Montgomery [12] has 
shown that  the  probability of error is given by 

P, = --rob 1 [rms noise envelope > rms signal amplitude] . 
2 

In our Class A  interference,  this gives us [from (9) of Part I ] ,  
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SNR, S/2. dB 

Figure 5 .  Performance  estimate  for  the optimum  incoherent  ON-OFF 
receiver [from  (49)] and the performance bound for the  optimum 
coherent  ON-OFF receiver [(34), Part I] for  the  interference case 
A = 0.35, I" = 0.5 X and for N = 10,100, and 1000. 

SNR,S,dB 

Figure 6. Performance of NCFSK correlation receiver [from (51b)l 
and  CFSK correlation receiver [from (41), Part 11 in Class A inter- 
ference  for I" ='1 X and A = O.Ol,O.l, 1, and 10. 

where, as before, S is the signal power  (and also the SNR 
because of  our normalization). 

Figure 6 shows the  performance  of  the  standard (i.e., opti- 
mum  for Gaussian noise NCFSK receiver, from (5  Ib),  for 
r" = 1 X IOu4 and A = 0.01,  0.1,  1,  and  10. Also shown is 
the  standard CFSK performance  from  (31)  of  Part I ,  k = 2. As 
expected,  for  the  standard receivers the use of NCFSK results 
only in a small degradation of performance  compared to CFSK 
for large S (small P,). 

The  performance  of  the  suboptimum  incoherent  ON-OFF 
system is more  difficult to  determine.  The  situation is sketched 
in  Figure 7. In Figure 7 the  probability  of  error is given by 

1 

2 
P, = - [Area I + Area 111, (52) 

where the  threshold K depends  on signal level S and is set to  
minimize P,. From (1 la)  of  Part I we have the pdf under H I  
(noise level), from (12), Part  I,  the  pdf  of  the envelope of 
signal plus noise. Therefore,  it follows directly  from these 
relations in  (52) that 

and 

Figure 7 .  Probability of error for  incoherent  ON-OFF  (suboptimum) 
correlation  receiver. 

so that [ l l ] ,  [13] 

For  the  performance of the  suboptimum  ON-OFF  system 
numerical  evaluation  of  (54) is required. However,  we  can 
approximately  compare  performance  of  the  standard  subopti- 
mum  incoherent  ON-OFF receiver with  that of our  optimum 
receiver and avoid additional numerical  evaluation  by compar- 
ing the  performance of the coherent ON-OFF  correlation 
receiver with  out  optimum incoherent ON-OFF receiver. This 
is a  reasonable approximation, since we have seen that  for  the 
normal  correlation receivers in Class A interference,  there is 
little difference between  coherent  and  incoherent  performance 
for small P, (e.g., Fig. 6). Accordingly,  Figure 8 shows (for 
N = 100)  the  performance  of  the  coherent  ON-OFF correla- 
tion receiver from (41)  of Part I vis-&vis the  estimated  per- 
formance of the  optimum  incoherent receiver from  Section 
IVB above (cf. Figs. 5 ,  6) for  our  example I" = 0.5 X 
and A = 0:35. As in the  coherent cases, these  results indicate 
that  substantial  improvement  (25  dB  or  more) over conven- 
tional  correlation receivers can be achieved. 



SNR,S/Z ,dB 

Figure 8. Performance  of  the  suboptimum  coherent  ON-OFF correla- 
tion  receiver [from (41), Part I] and  the  estimated  performance  of 
the  optimum  incoherent  ON-OFF receiver [from Sec. IVB] for  the 
Class A interference  case A = 0.35, r' = '0.5 X for N = 100. 

V. SUMMARY AND CONCLUSIONS 

Since communication systems  are  seldom interfered  with 
by classical white Gaussian noise, it has  been the object  of 
these  papers  (Parts I, 11) to  apply  a recently  developed  statis- 
tical-physical,  canonical model [ 11 , [2] of generalized impul- 
sive interference  to real-world problems  of signal detection. 
The  pertinent  features  of  this impulsive interference  model are 
summarized in Part I ,  including  typical  excellent  agreement 
with a variety of  measured  statistics. The critical feature of all 
EM interference of  these common classes is the highly non- 
Gaussian character of the  interference. 

Among the principal new results  are  canonical optimum 
detection algorithms for  coherent and incoherent binary detec- 
tion, also specialized to  the  three basic waveforms used in 
digital signaling; e.g., antipodal,  orthogonal,  and ON-OFF 
keying. Other  important results  are performance  bounds for 
these signaling situations. Since it is known  that in order  to 
gain significant improvement over current receivers, the 
number of independent samples of the received interference 
waveform must be large, performance measures are developed 
which are parametric  in the  number of  samples, or equiva- 
lently, in the  time-bindwidth  product. Performance  measures 
of current  suboptimum receivers (e.&, the conventional 
matched-filter  detectors for Gaussian noise) are also obtained 
and  compared  to  the  performance of the corresponding opti- 
mum  systems for these highly non-Gaussian EM environments. 
It is shown that substantial savings in signal power and/or in 
spectrum space can also be achieved. 

Since physical realization  of totally  optimum  detection 
algorithms cannot, in  general, be economically obtained,  the 
corresponding locally optimum or Bayes threshold (LOBD) 
receivers are derived and  their  performance specified. These 
threshold receiver structures are canonical,  in that  the form of 
their structure is independent of the explicit nature  of  the 
interference  and signal waveform. Locally optimum  structures 
are  also obtained for coherent  and  incoherent  detection  sub- 

TABLE 2 
SUMMARY OF PRINCIPAL NEW RESULTS 

Class  A I n t e r f e r e n c e  r l l . r 2 1  

S i g n d l i r g   S i t b a t i o n  

Coherent (; known) 

Likelihood  ratio,   Perfornlance bound, Pe 
Hi: X ( t ) = S 2 ( t ) + Z ( t )   ( P a r t   I ,   S e c .   1 1 1 )   ( P a r t  I ,  Sec.  111) 
Antipodal,   orthogonal 

and O:I-OFF - 

i n t i p o j a l ,  orthorlo- 
nal and O!{-CFF 

( p a r t  I ,  s e c .  I )  ~ P e ( P a r t   I ,   S e c t i o n  V )  
LOBO I Perfonnance  estimate 

I Corre la t ion  rece iver  1 "Exact" P, 
1 (optinun.  in gauss )  ~ ( P a r t  1, Set. I \ ' )  

-___ ___- - -.___ 
- 

Incoherent (;. unl.nown) 

i! l :   :qt!=sl(t ; :!+z(t)  
Hz: v ( t ) = s 2 ( t ; i ) t Z ( t )  
:ICFSY,,i =.:a,:', 

K a r h i t r a r ) . ,  : u n i -  
forl:, 
a ;  cons tan t  LOED (Sec.   I iA)  Perfortl :ance  estimate,  
6 ;  s lowfddi l lg  LCCD (Sec.   iIA) (I( = l ) ,  Pe (Sec.  IVA) 

XFSK with  phase 1 s t  and 2nd oruer  , 

e s t i h a t i o n  LOBD's (Sec. I IC)  ' I 
NCFSK Corre la t ion   rece iver   "Exact"  P, (Sec.  I V C )  

ON-OFF 

ject  to various kinds  of  fading signals. The  important  threshold 
case in  which phase estimation is used (so-called "partially 
coherent detection") is also treated. 

It is convenient to  summarize the particular detection  prob- 
lems  examined  and the results obtained  here  and in Part I in 
Table 2. As noted previously, all the  performance results, 
including the  performance of correlation receivers in Class A 
interference, are new. Many of the LOBD receiver structures 
are believed also to be new.  Specifically, it is shown that  the 
LOBD for NCFSK with slow-fading signals is different  from 
the LOBD with fast-fading signals when the  threshold K f 1. 
On the  other  hand,  for K = 1 ,  the LOBD structure has  been 
known  for some  time and is the same (cf. Fig. 1) for  constant 
slow-fading or fast-fading signals. [This result has  recently 
been demonstrated  for m-level NCFSK by Nirenberg [4 ] ,  who 
also  shows that if the signals contain  a desired amplitude 
modulation,  additional nonlinear processing is required  in the 
LOBD structure. However, the  techniques used by  Nirenberg 
to  obtain these  results  are quite different from  those used in 
this  study.] If K f 1,  the LOBD structure for slow-fading 
signals also involves the second moment of the fading  distribu- 
tion (i.e., the signal power),  whereas for fast-fading signals, the 
LOBD structure involves the mean  of the signal fading  distri- 
bution as well (cf. (12)). In addition,  the LOBD for  ON-OFF 
incoherent signaling is shown to  be a special case,  requiring the 
inclusion  of higher order  terms in the expansion  of the likeli- 
hood  ratio  to insure  consistency (Sec. IIB above). Furthermore, 
the LOBD structure  for NCFSK with phase estimation is 
found  to be canonical (as are the  other LOBD structures)  and 
to  involve a weighted  linear combination of the  coherent  and 
incoherent LOBD's (e.g., Fig. 2). 

Although an upper  bound on the  performance of the  com- 
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pletely optimum receiver for coherent signals is obtained in 
Part I, correspondingly general results  for incoherent signals 
are much  more  difficult  to achieve. For  incoherent  operation, 
the only performance result obtained here for  the  completely 
optimum receiver is the  performance  estimate  for  incoherent 
ON-OFF signals in Class A  interference (Sec. IVB). [We 
remark  that here and in Part I, all calculations  of performance 
are performed  with  the pdf  of the  interference in  normalized 
form, so that  the noise power is unity  and  the SNR is given 
by the signal power S.] In actual  situations, performance  of 
the  optimum  and locally optimum receivers is not  a  function 
of  the  SNR  alone because of the required  nonlinear processing. 
That is; for  actual  problems  of  interest,  the  performance algo- 
rithms  must use the  pdf  of  the  interference in  unnormalized or 
absolute  form. Accordingly, performance in general depends 
on the  absolute  interference level as well as on  the  SNR. In 
this sense, then, these receivers are adaptive; i.e., they  must be 
able to  adjust to  the  parameters (level, etc.)  of  the  interference. 

Various problems remain for  further investigation  (some 
now underway by the  authors). Among the more immediate 
is the  extension  of  the results to  include Class B and Class 
C (= Class A + Class B) interference [ I ] ,  [2] . Others are the 
following: Important digital signaling situations, such as mini- 
mal shift keying and differential phase shift keying,  and  the 
evaluation  of the  performance of some of the LOBD structures 
which have been derived here,  but  not explicitly determined 
(e.g., NCFSK with phase estimation).  Some  important charac- 
teristics of the LOBD’s, such as the  ARE  (asymptotic relative 
efficiency)  require more  quantitative  attention  [cf.  Section  V, 
Part  I] . For  example,  how “small” is a small signal in the 
threshold receiver development? Since the  truly  optimum  and 
locally optimum receivers must be adaptive,  techniques  by 
which  an actual receiver can estimate  the  required, changing 
interference  parameters need to  be developed. Multiplicative 
interference,  such  as  frequency selective fading, also needs to  
be  considered,  for various real world communications  chan- 
nels, especially when we attempt  to specify performance  in 
terms of a required time-bandwidth  product, since this  type  of 
interference usually restricts the  amount  of  bandwidth which 
can be effectively used.  Finally, we emphasize again the realis- 
tic  interfering  properties of the EM environment, man-made 
and  natural, which our systems must  work against, properties 
which are characterized  by highly non-Gaussian statistics 
[ I ,  21 * 
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